
AEC Dept. of IT Page 84

UNIT - IV

AEC Dept. of IT Page 85

UNIT-IV

INTERMEDIATE CODE GENERATION

1. Intermediate code forms:

An intermediate code form of source program is an internal form of a program created by the compiler
while translating the program created by the compiler while translating the program from a high level
language to assembly code(or)object code(machine code).an intermediate source form represents a
more attractive form of target code than does assembly. An optimizing Compiler performs
optimizations on the intermediate source form and produces an object module.

Analysis + syntheses=translation

Creates an generate targe code

Intermediate code

In the analysis synthesis model of a compiler, the front-end translates a source program into an
intermediate representation from which the back-end generates target code, in many compilers the
source code is translated into a language which is intermediate in complexity between a HLL and
machine code .the usual intermediate code introduces symbols to stand for various temporary
quantities.

Parser Static Intermediate Code
 checker code generator generator

position of intermediate code generator

We assume that the source program has already been parsed and statically checked.. the various
intermediate code forms are:

a) Polish notation
b) Abstract syntax trees(or)syntax trees
c) Quadruples
d) Triples three address code
e) Indirect triples

f) Abstract machine code(or)pseudocopde a. postfix notation:

AEC Dept. of IT Page 86

The ordinary (infix) way of writing the sum of a and b is with the operator in the middle: a+b. the
postfix (or postfix polish)notation for the same expression places the operator at the right end, as ab+.

In general, if e1 and e2 are any postfix expressions, and Ø to the values denoted by e1 and e2 is
indicated in postfix notation nby e1e2Ø.no parentheses are needed in postfix notation because the
position and priority (number of arguments) of the operators permits only one way to decode a
postfix expression.

Example:

1. (a+b)*c in postfix notation is ab+c*,since ab+ represents the infix expression(a+b).

2. a*(b+c)is abc+* in postfix.

3. (a+b)*(c+d) is ab+cd+* in postfix.

Postfix notation can be generalized to k-ary operators for any k>=1.if k-ary operator Ø is applied to

priority of each operator then we can uniquely decipher any postfix expression by scanning it from
either end.

Example:

Consider the postfix string ab+c*.

The right hand * says that there are two arguments to its left. since the next to-rightmost symbol is
c, simple operand, we know c must be the second operand of *.continuing to the left, we encounter
the operator +.we know the sub expression ending in + makes up the first operand of
.continuing in this way ,we deduce that ab+c is as (((a,b)+),c)*.

b. syntax tree:

The parse tree itself is a useful intermediate-language representation for a source program,

especially in optimizing compilers where the intermediate code needs to extensively restructure.

A parse tree, however, often contains redundant information which can be eliminated, Thus
producing a more economical representation of the source program. One such variant of a parse tree
is what is called an (abstract) syntax tree, a tree in which each leaf represents an operand and each
interior node an operator.

AEC Dept. of IT Page 87

/

*

+

= :=

a b a + -

Exmples:

1) Syntax tree for the expression a*(b+c)/d

d

a

b c

2) syntax tree for if a=b then a:=c+d else b:=c-d

If---then---else

c d d

Three-Address Code:
 In three-address code, there is at most one operator on the right side of aninstruction; that is, no

built-up arithmetic expressions are permitted.
x+y*z t1 = y * z t2 = x + t1
 Example

AEC Dept. of IT Page 88

Problems:
Write the 3-address code for the following expression
1. if(x + y * z > x * y +z) a=0;
2. (2 + a * (b c / d)) / e
3. A :=b * -c + b * -c

Address and Instructions

 Example Three-address code is built from two concepts: addresses and instructions.
 An address can be one of the following:
 A name: A source name is replaced by a pointer to its symbol table entry.
 A name: For convenience, allow source-program names to Appear as addresses in three-address

code. In an Implementation, a source name is replaced by a pointer to
its symbol-table entry, where all information about the name is kept.
 A constant
 A constant: In practice, a compiler must deal with many different types of constants and variables
 A compiler-generated temporary
 A compiler-generated temporary. It is useful, especially in optimizing compilers, to create a

distinct name each time a temporary is needed. These temporaries can be combined, if possible, when
registers are allocated to variables.
A list of common three-address instruction forms: Assignment statements
 x= y op z, where op is a binary operation
 x= op y, where op is a unary operation
 Copy statement: x=y
 Indexed assignments: x=y[i] and x[i]=y
 Pointer assignments: x=&y, *x=y and x=*y

Control flow statements
 Unconditional jump: goto L
 Conditional jump: if x relop y goto L ; if x goto L; if False x goto L
 Procedure calls: call procedure p with n parameters and return y, is Optional

param x1 param x2

param xn call p, n

 do i = i +1; while (a[i]<v);

AEC Dept. of IT Page 89

The multiplication i * 8 is appropriate for an array of elements that each take 8 units of space.

C. quadruples:
Three-address instructions can be implemented as objects or as record with fields for the operator

and operands.
Three such representations
Quadruple, triples, and indirect triples
A quadruple (or quad) has four fields: op, arg1, arg2, and result.

Example D. Triples
A triple has only three fields: op, arg1, and arg2
Using triples, we refer to the result of an operation x op y by its position, rather by an explicit

temporary name.
Example

d. Triples:
A triple has only three fields: op, arg1, and arg2

AEC Dept. of IT Page 90

 Using triples, we refer to the result of an operation x op y by its position, rather by an explicit
temporary name.
Example

Fig: Representations of a = b * - c + b * - c

Fig: Indirect triples representation of 3-address code
-> The benefit of Quadruples over Triples can be seen in an optimizing compiler, where
instructions are often moved around.
->With quadruples, if we move an instruction that computes a temporary t, then the instructions

that use t require no change. With triples, the result of an operation is referred to by its position, so
moving an instruction may require changing all references to that result. This problem does not
occur with indirect triples.

Single-Assignment Static Form

Static single assignment form (SSA) is an intermediate representation that facilitates certain code
optimization.
 Two distinct aspects distinguish SSA from three address code.

AEC Dept. of IT Page 91

 All assignments in SSA are to variables with distinct names; hence the term static single-
assignment.

2. Type Checking:
 compiler has to do semantic checks in addition to syntactic checks. Checks

Static done during compilation

Dynamic done during run-time

Type checking is one of these static checking operations.

we may not do all type checking at compile-time.

Some systems also use dynamic type checking too.

 type system is a collection of rules for assigning type expressions to the parts of a program.

 type checker implements a type system.

 sound type system eliminates run-time type checking for type errors.

AEC Dept. of IT Page 92

 programming language is strongly-typed, if every program its compiler accepts will execute
without type errors.

In practice, some of type checking operations is done at run-time (so, most of the programming
languages are not strongly yped).

Type Expression:
 type of a language construct is denoted by a type expression.

 type expression can be:

A basic type

 primitive data type such as integer, real, char, Boolean,

-error to signal a type error

 no type

A type name

 name can be used to denote a type expression.

A type constructor applies to other type expressions.

 arrays: If T is a type expression, then array (I,T)is a type expression where I denotes index range.

Ex: array (0..99,int)

 products: If T1and T2 are type expressions, then their Cartesian product T1 x T2 is a type
expression. Ex: int x int

pointers: If T is a type expression, then pointer (T) is a type expression. Ex: pointer (int)

 functions: We may treat functions in a programming language as mapping from a domain type D to

D are R

and its return type is also int.

Type Checking of Statements:

S ->d= E { if (id.type=E.type then S.type=void

else S.type=type-error }

AEC Dept. of IT Page 93

S ->if E then S1 { if (E.type=boolean then S.type=S1.type

else S.type=type-error }

S->while E do S1 { if (E.type=boolean then S.type=S1.type

else S.type=type-error }

Type Checking of Functions:

E->E1(E2) {

else E.type=type-error }

Ex: int f(double x, char y) { ... }

f: double x char->int

argume types return type

Structural Equivalence of Type Expressions:

 do we know that two type expressions are equal?

 long as type expressions are built from basic types (no type names), we may use structural
equivalence between two type expressions

Structural Equivalence Algorithm (sequin):

if (s and t are same basic types) then return true

else if (s=array(s1,s2) and t=array(t1,t2)) then return (sequiv(s1,t1) and sequiv(s2,t2)) else if (s = s1 x

s2and t = t1 x t2) then return (sequiv(s1,t1) and sequiv(s2,t2))

else if (s=pointer(s1) and t=pointer(t1)) then return (sequiv(s1,t1))

else if (s = s1 else return false

AEC Dept. of IT Page 94

Names for Type Expressions:

 In some programming languages, we give a name to a type expression, and we use that name as a
type expression afterwards.

type link ? p,q,r,s have same types ? var p,q : link;

var r,s

 do we treat type names?

Get equivalent type expression for a type name (then use structural equivalence), or

Treat a type name as a basic type

3. Syntax Directed Translation:

 A formalist called as syntax directed definition is used fort specifying translations for
programming language constructs.

 A syntax directed definition is a generalization of a context free grammar in which each
grammar symbol has associated set of attributes and each and each productions is associated
with a set of semantic rules

Definition of (syntax Directed definition) SDD :

SDD is a generalization of CFG in which each grammar productions X-
of semantic rules of the form

a: =

Where a is an attributes obtained from the function f.

 A syntax-directed definition is a generalization of a context-free grammar in which:

 Each grammar symbol is associated with a set of attributes.

 This set of attributes for a grammar symbol is partitioned into two subsets called synthesized and

inherited attributes of that grammar symbol.

 Each production rule is associated with a set of semantic rules.

 Semantic rules set up dependencies between attributes which can be represented by a dependency
graph.

AEC Dept. of IT Page 95

 This dependency graph determines the evaluation order of these semantic rules.

 Evaluation of a semantic rule defines the value of an attribute. But a semantic rule may also have
some side effects such as printing a value.

The two attributes for non terminal are :

1) Synthesized attribute (S-attribute) :

An attribute is said to be synthesized attribute if its value at a parse tree node is determined from
attribute values at the children of the node

2) Inherited attribute:

An inherited attribute is one whose value at parse tree node is determined in terms of attributes at the
parent and | or siblings of that node.

 The attribute can be string, a number, a type, a, memory location or anything else.

 The parse tree showing the value of attributes at each node is called an annotated parse tree.

The process of computing the attribute values at the node is called annotating or decorating the parse
tree.Terminals can have synthesized attributes, but not inherited attributes.

Annotated Parse Tree

 A parse tree showing the values of attributes at each node is called an Annotated parse tree.

 The process of computing the attributes values at the nodes is called annotating (or decorating) of
the parse tree.

 Of course, the order of these computations depends on the dependency graph induced by the

semantic rules.
Ex1:1) Synthesized Attributes : Ex: Consider the CFG :

 EN - T T*F

AEC Dept. of IT Page 96

Solution: The syntax directed definition can be written for the above grammar by using semantic
actions for each production.

Production rule Semantic actions

 S.val=E.val
E E.val =E1.val + T.val
E -T E.val = E1.val T.val

 E.val =T.val
 T.val = T.val * F.val

T T.val =T.val | F.val
F F.val =E.val

 T.val =F.val
F F.val =digit.lexval
N can be ignored by lexical Analyzer as; I

is terminating symbol

For the Non-terminals E,T and F the values can be obtained using the attribute

The taken digit has synthesized attribute

In symbol S is the start symbol. This rule is to print the final answer of expressed.

Following steps are followed to Compute S attributed definition

1. Write the SDD using the appropriate semantic actions for corresponding production rule of the
given Grammar.

2. The annotated parse tree is generated and attribute values are computed. The Computation is done
in bottom up manner.

3. The value obtained at the node is supposed to be final output.

PROBLEM 1:

Consider the string 5*6+7; Construct Syntax tree, parse tree and annotated tree.

Solution:

The corresponding annotated parse tree is shown below for the string 5*6+7;

AEC Dept. of IT Page 97

Syntax tree:

Annotated parse tree :

Advantages: SDDs are more readable and hence useful for specifications

Disadvantages: not very efficient.

Ex2:

PROBLEM : Consider the grammar that is used for Simple desk calculator. Obtain the

Semantic action and also the annotated parse tree for the string

AEC Dept. of IT Page 98

 (E)

Solution :

Production rule Semantic actions

 L.val=E.val

 E.val=E1.val + T.val

 E.val=T.val

 T.val=T1.val*F.val

 T.val=F.val

 F.val=E.val

 F.val=digit.lexval

The corresponding annotated parse tree U shown below, for the string 3*5+4n.

AEC Dept. of IT Page 99

Dependency Graphs:

Dependency graph and topological sort:

 For each parse-tree node, say a node labeled by grammar symbol X, the dependency graph
has a node for each attribute associated with X.

 If a semantic rule associated with a production p defines the value of synthesized attribute A.b
in terms of the value of X.c. Then the dependency graph has an edge from X.c to A.b

 If a semantic rule associated with a production p defines the value of inherited attribute B.c in
terms of the value X.a. Then , the dependency graph has an edge from X.a to B.c.

Applications of Syntax-Directed Translation
 Construction of syntax Trees
 The nodes of the syntax tree are represented by objects with a suitable number of fields.
 Each object will have an op field that is the label of the node.
 The objects will have additional fields as follows
 If the node is a leaf, an additional field holds the lexical value for the leaf. A constructor function

Leaf (op, val) creates a leaf object.
 If nodes are viewed as records, the Leaf returns a pointer to a new record for a leaf.

 If the node is an interior node, there are as many additional fields as the node has children in the
syntax tree. A constructor function
Node takes two or more arguments:
Node (op , creates an object with first field op and k additional fields for the k children

Syntax-Directed Translation Schemes
A SDT scheme is a context-free grammar with program fragments embedded within production
bodies .The program fragments are called semantic actions and can appear at any position within the
production body.
Any SDT can be implemented by first building a parse tree and then pre-forming the actions in a left-
to-right depth first order. i.e during preorder traversal.
The use of to implement two important classes of
1. If the grammar is LR parsable, then SDD is S-attributed.
2. If the grammar is LL parsable, then SDD is L-attributed.

AEC Dept. of IT Page 100

Postfix Translation Schemes
The postfix SDT implements the desk calculator SDD with one change: the action for the first
production prints the value. As the grammar is LR, and the SDD is S-attributed.
L {print(E.val);}
E E1 + T { E.val = E1.val + T.val }

- T { E.val = E1.val - T.val }
E

F E) { F.val = E.val }
F { F.val = digit.lexval }

AEC Dept. of IT Page 101

RUN TIME STORAGE ORGANIZATION

Symbol table:

A symbol table is a major data structure used in a compiler:

 Associates attributes with identifiers used in a program.
 For instance, a type attribute is usually associated with each identifier.

A symbol table is a necessary component.

Definition (declaration) of identifiers appears once in a program Use of identifiers may appear in

many places of the program text Identifiers and attributes are entered by the analysis phases

When processing a definition (declaration) of an identifier

In simple languages with only global variables and implicit declarations:

The scanner can enter an identifier into a symbol table if it is not already there
structured languages with scopes and explicit declarations:

The parser and/or semantic analyzer enter identifiers and corresponding attributes
 Symbol table information is used by the analysis and synthesis phases

 To verify that used identifiers have been defined (declared)

In block-

 To verify that expressions and assignments are semantically correct type checking
 To generate intermediate or target code

Symbol Table Interface:

The basic operations defined on a symbol table include:

allocate to allocate a new empty symbol table

free to remove all entries and free the storage of a symbol table

insert to insert a name in a symbol table and return a pointer to its entry

lookup to search for a name and return a pointer to its entry

set_attribute to associate an attribute with a given entry

get_attribute to get an attribute associated with a given entry

 Other operations can be added depending on requirement

For example, a delete operation removes a name previously inserted Some identifiers become

invisible (out of scope) after exiting a block

AEC Dept. of IT Page 102

 This interface provides an abstract view of a symbol table.
 Supports the simultaneous existence of multiple tables
 Implementation can vary without modifying the interface

Basic Implementation Techniques:

First consideration is how to insert and lookup names

Variety of implementation techniques

Unordered List

Simplest to implement

Implemented as an array or a linked list

Linked list can grow dynamically alleviates problem of a fixed size array

Insertion is fast O(1), but lookup is slow for large tables O(n) on average

Ordered List

If an array is sorted, it can be searched using binary search O(log2 n)

Insertion into a sorted array is expensive O(n) on average

Useful when set of names is known in advance table of reserved words

Binary Search Tree

Can grow dynamically

Insertion and lookup are O(log2 n) on average

Hash Tables and Hash Functions:

 A hash table is an array with index range: 0 to TableSize 1
 Most commonly used data structure to implement symbol tables
 Insertion and lookup can be made very fast O(1)
 A hash function maps an identifier name into a table index

A hash function, h(name), should depend solely on name

h(name) should be computed quickly

h should be uniform and randomizing in distributing names

All table indices should be mapped with equal probability

Similar names should not cluster to the same table index.

AEC Dept. of IT Page 103

Storage Allocation:

 Compiler must do the storage allocation and provide access to variables and data
 Memory management

Stack allocation

Heap management

Garbage collection

Storage Organization:

 Assumes a logical address space

Operating system will later map it to physical addresses, decide how touse cache memory, etc.

 Memory typically divided into areas for

Program code

Other static data storage, including global constants and compilergenerated data

Stack to support call/return policy for procedures

Heap to store data that can outlive a call to a procedure

Static vs. Dynamic Allocation:

 Static: Compile time, Dynamic: Runtime allocation
 Many compilers use some combination of following

Stack storage: for local variables, parameters and so on

Heap storage: Data that may outlive the call to the procedure that created it

AEC Dept. of IT Page 104

Stack allocation is a valid allocation for procedures since procedure calls are nest

Example:

Consider the quick sort program

Activation for Quicksort:

AEC Dept. of IT Page 105

Activation tree representing calls during an execution of quicksort:

Activation records

Procedure calls and returns are usually managed by a run-time stack called the control stack.

Each live activation has an activation record (sometimes called a frame)

The root of activation tree is at the bottom of the stack

The current execution path specifies the content of the stack with the last

Activation has record in the top of the stack.

A General Activation Record

Activation Record
 Temporary values
 Local data
 A saved machine status
 An
 A control link

AEC Dept. of IT Page 106

 Space for the return value of the called function
 The actual parameters used by the calling procedure

 Elements in the activation record:

Temporary values that could not fit into registers.

Local variables of the procedure.

Saved machine status for point at which this procedure called. Includes return address

and contents of registers to be restored.

Access link to activation record of previous block or procedure in lexical scope chain.

Control link pointing to the activation record of the caller.

Space for the return value of the function, if any.

actual parameters (or they may be placed in registers, if possible)

Downward-growing stack of activation records:

AEC Dept. of IT Page 107

Designing Calling Sequences:

 Values communicated between caller and callee are generally placed at the beginning of

 Fixed-length items: are generally placed at the middle

 Items whose size may not be known early enough: are placed at the end of activation record

 We must locate the top-of-stack pointer judiciously: a common approach is to have it point to
the end of fixed length fields

Access to dynamically allocated arrays:

ML:

 ML is a functional language

 Variables are defined, and have their unchangeable values initialized, by a statementof the
form:
val (name) = (expression)

 Functions are defined using the syntax:

AEC Dept. of IT Page 108

fun (name) ((arguments)) = (body)

 For function bodies we shall use let-statements of the form: let
(list of definitions) in (statements) end

A version of quick sort, in ML style, using nested functions:

Access links for finding nonlocal data:

AEC Dept. of IT Page 109

Sketch of ML program that uses function-parameters:

 \

Actual parameters carry their access link with them:

Maintaining the Display:

AEC Dept. of IT Page 110

Memory Manager:

 Two basic functions:

Allocation

Deallocation

 Properties of memory managers:

Space efficiency

Program efficiency

Low overhead

Typical Memory Hierarchy Configurations:

Locality in Programs:

The conventional wisdom is that programs spend 90% of their time executing 10% of the code:

Programs often contain many instructions that are never executed.

Only a small fraction of the code that could be invoked is actually executed in atypical run of the
program.

The typical program spends most of its time executing innermost loops and tight recursive cycles in a
program.

